A Parallel Hierarchical-Element Method for Contour Dynamics Simulations
نویسنده
چکیده
Many two-dimensional incompressible inviscid vortex flows can be simulated with high efficiency by means of the contour dynamics method. Several applications require the use of a hierarchical-element method (HEM), a modified version of the classical contour dynamics scheme by applying a fast multipole method, in order to accelerate the computations substantially. The HEM can be used, for example, to study the large-scale motion of coherent structures in geophysical fluid dynamics where the flow can be modelled by considering the motion in a thin layer of fluid in the presence of a non-uniform background vorticity (due to the latitudinal variation of the Coriolis force). Nevertheless, such simulations demand a substantial computational effort, even when the HEM is used. In this paper it is shown that the acceleration of contour dynamics simulations by means of the HEM can be increased further by parallelising the HEM algorithm. Speed-up, load balance and scalability are parallel performance features which are studied for several test examples. Furthermore, typical simulations are shown, including an application of vortex dynamics near the pole of a rotating sphere. The HEM has been parallelised using OpenMP and tested with up to 16 processors on an Origin 3800 cc-NUMA computer.
منابع مشابه
Contour Dynamics Simulations with a Parallel Hierarchical-Element Method
Many two-dimensional incompressible inviscid vortex flows can be simulated with high efficiency by means of the contour dynamics method. Several applications require the use of a hierarchical-element method (HEM), a modified version of the classical contour dynamics scheme by applying a fast multipole method, in order to accelerate the computations substantially. In this paper it is shown that ...
متن کاملInfluences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation
This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...
متن کاملمعادلات ساختاری و روش های شبیه سازی جذب انرژی در نانو زرهها
Experimental evidence shows that some Nano-composites have particular importance in armor vehicles structures. Simulation and finding the properties of these Nano-composites analytically or numerically is an essential work, due to the cost of Nano reinforcements and their production complexity with current methods. This paper employs analytical- experimental constitutive equations of energy abs...
متن کاملPlasticity Effect on Residual Stresses Measurement Using Contour Method
Residual stresses have become an important player in the field of the structural integrity for many years. Having an exact knowledge of residual stress distributions can be essential in designing the engineering components as unexpected failures are inevitable where such stresses are ignored. There are many residual stresses measurement techniques including destructive and non-destructive ones...
متن کاملA parallel finite element simulator for ion transport through three-dimensional ion channel systems
A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-...
متن کامل